对从FFPE组织块制备的载玻片上切割的染色组织的光学显微镜检查是组织诊断的金标准。此外,任何病理学家的诊断能力和专业知识都取决于他们在常见和稀有变体形态上的直接经验。最近,深度学习方法已被用来成功显示此类任务的高度准确性。但是,获得专家级注释的图像是一项昂贵且耗时的任务,人为合成的组织学图像可能会非常有益。在这里,我们提出了一种方法,不仅可以生成组织学图像,从而重现普通疾病的诊断形态特征,而且还提供了产生新的和罕见形态的用户能力。我们的方法涉及开发一种生成的对抗网络模型,该模型综合了由类标签约束的病理图像。我们研究了该框架合成现实的前列腺和结肠组织图像的能力,并评估了这些图像在增强机器学习方法的诊断能力以及通过一组经验丰富的解剖病理学家的可用性方面的实用性。我们的框架生成的合成数据在训练深度学习模型中进行了类似于实际数据进行诊断。病理学家无法区分真实图像和合成图像,并显示出相似的前列腺癌分级的观察者间一致性。我们扩展了从结肠活检中显着复杂图像的方法,并表明也可以再现了此类组织中的复杂微环境。最后,我们介绍了用户通过简单的语义标签标记来生成深层组织学图像的能力。
translated by 谷歌翻译
Recent advances in Federated Learning (FL) have paved the way towards the design of novel strategies for solving multiple learning tasks simultaneously, by leveraging cooperation among networked devices. Multi-Task Learning (MTL) exploits relevant commonalities across tasks to improve efficiency compared with traditional transfer learning approaches. By learning multiple tasks jointly, significant reduction in terms of energy footprints can be obtained. This article provides a first look into the energy costs of MTL processes driven by the Model-Agnostic Meta-Learning (MAML) paradigm and implemented in distributed wireless networks. The paper targets a clustered multi-task network setup where autonomous agents learn different but related tasks. The MTL process is carried out in two stages: the optimization of a meta-model that can be quickly adapted to learn new tasks, and a task-specific model adaptation stage where the learned meta-model is transferred to agents and tailored for a specific task. This work analyzes the main factors that influence the MTL energy balance by considering a multi-task Reinforcement Learning (RL) setup in a robotized environment. Results show that the MAML method can reduce the energy bill by at least 2 times compared with traditional approaches without inductive transfer. Moreover, it is shown that the optimal energy balance in wireless networks depends on uplink/downlink and sidelink communication efficiencies.
translated by 谷歌翻译
古典和集中的人工智能(AI)方法要求将数据从生产者(传感器,机器)移至饥饿的数据中心,从而在侵犯隐私的同时,由于计算和通信资源的需求而引起的环境问题。缓解这种高能源成本的新兴替代方案建议在通常低功率的设备上有效分发或联合跨设备的学习任务。本文提出了一个新的框架,用于分析分布式和联合学习(FL)中的能量和碳足迹。提出的框架量化了香草FL方法和基于共识的完全分散方法的能量足迹和碳当量排放。我们讨论支持绿色FL设计并支撑其可持续性评估的最佳界限和运营点。分析了新兴5G行业垂直行业的两项案例研究:它们量化了持续和强化学习设置的环境足迹,在这些培训过程中,定期重复训练过程以进行持续改进。对于所有情况,分布式学习的可持续性都取决于满足沟通效率和学习者人口规模的特定要求。考虑到目标工业应用的模型和数据足迹,还应将能源和测试精度交易。
translated by 谷歌翻译